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Kelvin waves on oceanic boundaries 

By JOHN W. MILES 
Institute of Geophysics and Planetary Physics, University of California, La Jolla 

(Received 5 May 1972) 

The primitive Kelvin wave (on a rotating, semi-infinite, plane sheet of water of 
uniform depth bounded by a vertical wall) is corrected for the effects of the 
Earth’s curvature, the reduction in depth over the continental shelf, and bends 
in the coastline. The results are of interest for coastal propagation of the tides; 
numerical examples are given for the California coastline. It is found that the 
Earth’s curvature reduces the wave speed south of Cape Mendocino by 8-10 % 
(the possible range for other coastlines is roughly f 15 %) and that the continental 
shelf reduces the wave speed by 2-8%. The off-shore mass transport (which 
vanishes identically for the primitive Kelvin wave) induced by curvature and/or 
the shelf also is calculated. The analysis of Packham & Williams (1968) for 
diffraction of a Kelvin wave by a corner is extended to obtain explicit results 
for the phase of the transmission coefficient. It is found that a sustained change 
in the direction of the coastline may induce a phase shift of the order of an hour 
(1.3 hours for the bend a t  Cape Mendocino), but that small distortions of the 
coastline without a sustained change in direction have negligible effects on the 
transmitted Kelvin wave at tidal frequencies. 

1. Introduction 
The classical Kelvin wave (Lamb 1932, $208) is a trapped solution of the 

equations governing small disturbances on a rotating, semi-infinite, plane sheet 
of water of uniform depth I t ,  that is bounded by a vertical wall. It advances 
along this boundary with the phase speed 

c1 = (gh1P (1.1) 

in the direction of rotation (south on a western boundary or north on an eastern 
boundary in the northern hemisphere). We consider here the necessary modifica- 
tions of this model to allow for the Earth’s curvature, the reduction in depth over 
a continental shelf, and the departure from a straight coastline, all on the 
hypothesis that these individual effects are either sufficiently small or sufficiently 
independent to permit their linear superposition. The results are of interest 
primarily for coastal propagation of the tides (cf. Munk, Snodgrass & Wimbush 
1970), and we therefore restrict our  considerations to frequencies of the order of 
the Earth’s rotational speed. 

The fact that disturbances which closely resemble Kelvin waves are observed 
in terrestial oceans suggests that the Earth’s curvature must have only secondary 
effects on the classical KeIvin wave a t  tidal frequencies. We give a first-order 
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FIGURE 1. The Mereator and coastal co-ordinates; see (2.10). The line z = 0 
is the straight coastline of 0 3. 

asymptotic calculation of these effects in $ 3 for middle latitudes and sufficiently 
large values of the dimensionless wavenumber 

kl = aalc,, (1.2) 

where CT is the angular frequency and a is the radius of the Earth. The end result, 
(3.11) below, implies that the amplitude of the modified Kelvin wave is propor- 
tional to the square root of the sine of the latitude (a result obtained earlier by 
Moore (1968) for an equatorial Kelvin wave) and that its wave speed is 

c = c1 + $c:( Qa)-l sec 8 sin $ (Qa cos 8 9 c,), (1.3) 

where Q is the rotational speed of the Earth, 8 is the latitude, and $ is the angle 
shown in figure 1. The change in wave speed is - 8-10 % along the California 
coast south of Cape Mendocino ($ = 230") and as large as - 15 % on the south 
coast of Australia. 

Munk et al. (1970) calculate the reduction of the wave speed for both step and 
exponential shelves. Smith (1972) calculates the corresponding reduction for an 
arbitrary profile through a perturbation expansion (see also $ 4  below), taking 
advantage of the fact that the shelf width is small relative to the tidal wavelength. 
The end result is 

c + c1-2Qdsin8 (Qd < cl), ( 1 . 4 ~ )  

where d = /ow (1 - (h/hl))d2, h - h, (2 --f m), (1.4b, c) 

h is the local depth, and D is the off-shore co-ordinate. The reduction for the 
California coast ranges from a maximum of 8 yo for the broad shelf off Southern 
California (d + 190 km, h, = 4 km) to a minimum of roughly 2 yo for the relatively 
narrower shelf north of Cape Mendocino (d = 50 km, h, = 3 km). 

The effect of a sharp corner on a Kelvin wave has been calculated by Packham 
& Williams (1968); however, they give explicit results only for the amplitude 
of the diffracted Kelvin wave. We deduce the corresponding phase shift from 
their results in the appendix and give an independent calculation for small 
angles in $ 4  (which is perhaps warranted by the complicated nature of the 
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analysis of Packham & Williams). The asymptotic time delay owing to a concave 
corner of angle n - E (figure 2 (a)) is 

t ,  = -ic(n8ine)-1 ( le i  < I), (1.5) 

which is between one and two hours for a 45" corner in middle latitudes. We also 
show, in 0 4, that the effect of a bump of amplitude b, without a sustained change 
in direction, is of the order of (ab/c)2, so that small distortions in the coastline 
are negligible in the present context. 

2. Equations of motion 

§214) 

We begin with the Laplace tidal equations in homogeneous form (Lamb 1932, 

i $ + 2 n x 6 + g v p =  0 ( 2 . 1 ~ )  

and V.(he)+g, = 0, (2. lb)  

where 6 is the horizontal velocity, pis the vertical displacement of the free 
surface, S2 is the angular velocity of the Earth (only the vertical component of 
which is significant here), g is the acceleration of gravity, h is the local depth, t is 
time, and subscripts imply partial differentiation. Referring g to the depth h, 
and 0 to the corresponding gravity-wave speed, equation (i . l) ,  and assuming 
an harmonic time dependence with angular frequency cr, we pose the solution 
to (2.1) in the form 

{ P ,  q = W@, ah,  p) ,  c, w, A} eidl, (2.2) 

where W implies the real part of, < and v are dimensionless complex amplitudes, 
and h and p are Mercator co-ordinates; h (positive east) is the conventional 
longitude, whilst p (positive north) is related to the conventional latitude 19 
through the transformation 

cost9 = sechp, sine = tanhp. (2.3) 

The differential displacement on a spherical Earth of radius a and the gradient 
operator then are given by 

( 2 . 4 ~ )  

and V = (asechp)-l (aA,  aP),  (2.4b) 

where, here and subsequently, the couplet ( A ,  B )  is a vector having the A-compo- 
nent A and the p-component B. We also introduce 

(2.5) 

dr = (asechp) (dh ,  dp)  

[ = (20/a) tanhp = el tanhp 

as a dimensionless Coriolis parameter, 

, A = h/h, 
as a dimensionless depth, and 

I& = L,ssech,u 

as a dimensionless wavenumber, where dl is given by (I .2). 
8-2 
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Substituting (2.2)-(2.7) into (2. 1) ,  we obtain 

v = ( i / 4  (1  - P 2 ) - l  (61 - iec,, 6, + i e c h )  

We seek the solution of (2.9) in the neighbourhood of an approximately straight 
coastline, say x = xo(y), IxiI < 1, where x and y are defined by the rotation (see 
figure 1)  

(2.10) 

The differential operator in (2.9) is invariant under this rotation, whence 

[(&) (6z-iccy)]z+ [(&) (6y+iC5,)] +R2Y = 0. (2.11) 
2/ 

The boundary condition that there be no mass transport across the coastline 
transforms to 

Wz-i16J = 0 (x = xo); (2.12u) 

in addition, 6 must satisfy the finiteness condition 

c - t o  (x+oo). (2.12 b )  

We emphasize that the length scale for x and y is usechp. 

3. Effects of Earth’s curvature 

R = 1 (uniform depth, h e h,) and xo = 0 in (2.11) and (2.12) to obtain 
We isolate the effects of the Earth’s curvature 011 a Kelvin wave by setting 

and Q-iPKy = 0 (x = O ) ,  c-+ 0 (x -+ co), (3.2u, b )  

where, throughout this section, the primes imply differentiation with respect top. 
The solution of (3.1) and (3.2) for constant 1 and kis given by the (primitive 

Kelvin wave) 

where A is a constant amplitude. Guided by this result and by Green’s asymptotic 
solution of the problem of one-dimensional wave propagation in a medium of 
slowly varying properties, we seek an asymptotic solution of (3.1) and (3.2) for 
R - t  co with kx = 0 ( 1 )  in the form 

<(x, y) = A e-!Lx+iLu (tf = R’ = O ) ,  (3.3) 

6(& Y) = A (x, Y) exp ( - e, s x  + isu” s dY] , (3.4) 

where 1 0  = &(Po + CY) and Lo = 4 P o  + CY) (3.5) 

are evaluated at x = 0, po is a reference latitude, and A(x, y) is, by hypothesis, 
a slowly varying function vis-d-vis the exponential. 



Kelvin waves on oceanic boundaries 117 

Being interested primarily in the neighbourhood of the coastline, we do not 
require uniform validity of (3.4) as x -+ co and may expand A(%, y) about x = 0. 
Requiring (3.4) to satisfy (3.2u, b), we find that an appropriate form of this 
expansion is 

A(%, yf = A,(y) +ia,x(dA,pyj + &2A,(Y) + O(l/k;), 40% = O(1) (4, + 001, 

(3.6) 
in which (we anticipate) A ,  = 0(,4,). Multiplying (3.1) through by 1 - 1 2 ,  ex- 
panding ,! and /' about x = 0,  substituting (3.4) and (3.6) into the result, and 
retaining only the dominant terms, which are O(ko) as Lo + co with Lox = O(l),  
we obtain 

2ik0(l -lo") (dA,/dy)  + [iA;c+4,,(s+i/,c)e;- 2ik0(p,k0)'cx 

+ (( 1 - 6 j 4;}' sx] A,  + ( 1 - a/',, koz) A ,  = 0. (3.7) 

Equating the terms of degree zero and one in x separately to zero, we obtain 

-4 = lil{ff;a- ( i C + / O S )  (,!oS)'}A, (3.8) 

and (dAo/dY) - K ~ e ~ / P o ~ ~ - 1 - ~ ~ ~ ~ / e o ~ o ~ ~ ~ ~ o  = 0. (3.9) 

A,(?/) = A,(@) {!(Po + cY)/!(Po)}+ exp ( - 84s/,!1) Y}. 

Invoking (2.5) and (2.7) to simplify (4; /~040)  in (3.9), and then integrating, we 
obtain 

(3.10) 

Setting x = 0 in (3.4) and invoking (3.6) and (3.10), we obtain 

within an error factor of 1 + O( l/ffg). We conclude that, to f i s t  order in l/ko, 
the principal effects of the Earth's curvature on a Kelvin wave, moving along 
a straight coastline running @west of north (see figure l), are to alter its amplitude 
in proportion to ,!a or, equivalently, (sin O)*,  and its reciprocal wave speed from 

( 3 . 1 2 ~ )  c-l = (cr~sechp)-~{d- &(s/el)} 

= c,l-$(Qa)-lsecBsin@. (3.12b) 

The increase in amplitude between 30" N and 40" N on a western boundary is 
13 %. The decrease in wave speed for 8 = 35", $ = 230", and h, = 4 km (corre- 
sponding to the California coastline south of Cape Mendocino) is 10 %. 

The variation of the Kelvin-wave amplitude with latitude is a direct con- 
sequence of conservation of energy (this is typical of Green's approximation; 
cf. Lamb (1932,s 186)) and reflects the fact that the thickness of the Kelvin-wave 
boundary layer (after allowing for the Mercator scaling) is inversely proportional 
to e. The variation of the wave speed is an indirect consequence of the variation 
of the metrical coefficient in a direction normal to the coastline and is curious 
in being inversely proportional to the variation of the Coriolis parameter with 
latitude. We remark that the invocation of Rossby's beta-plane approximation, 

t If A = A(y) is slowly varying, the right-hand side of (3.11) should be multiplied by 
{R(O) /R(y) }*  and I replaced by A{A(O)/R(y)}~ in the integrand. 

l / C l  to 
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in which e, e' and Aare regarded as constant in (3.1) and terms of order el2 are 
neglected, implies 

A+ is( 1 - p)-lp' 

in place of A- +(s/Fl) in (3.12a), whence 

c-l = c-l + (Q/a) ( u2 - 4Q2 sin2 e)-l cos 8 sin $ ( F ,  / ' I ,  A constant). (3.13) 

This approximation yields a correction that is exactly the negative of that pro- 
vided by (3.12b) if u = 2Q (semi-diurnal tides), and it typically yields a much 
larger change in wave speed (with a singularity at  8 = 30") if u = Q (diurnal 
tides). In fact, the beta-plane approximation is inconsistent in the present con- 
text, in which the variation of R2 in (3.1) implies effects that are comparable with 
those implied by 1'. 

The particle velocity accompanying a primitive Kelvin wave is parallel to 
the coastline. A convenient measure of the departure of the velocity field from 
this primitive state is the ellipticity (cf. Munk et al. 1970) 

e = - +L - al/)/G/ + iecz). (3.14) 

Substituting (3.4)-(3.6) into (3.14), invoking (3.8) and (3.9), and retaining only 
the dominant terms, we obtain 

4 = ( ~ , R 0 ) - ~ { i ( ~ , k 0 ) ' c - ~ A ; } z  (koz < 1)  ( 3 . 1 5 ~ )  

(3.15 b)  

where 2 is the dimensional off-shore distance. The number in curly brackets is 
- (0.94 + i0.44) for the semi-diurnal tide (el = 1)  on the California coast south 
of Cape Mendocino. The dimensionless, complex amplitude of the offshore mass 
transport is, from (2.8) and (3.14), 

= (2i cos $ cot 28 +/';'sin $ sec 8} ($/a), 

nz = ( i /A)  (1  - P"-' (Q - id) A = - i4AC (3.16) 

in first approximation ( A  =_ 1 here, but not in Q 5 below). 

4. Shelf effects 
We calculate the effect of the variation in depth over the continental shelf on 

the assumption that the shelf width is small compared with each of the other 
characteristic lengths for the Kelvin wave. A convenient measure of the shelf 
width (suggested by the displacement thickness of boundary -layer theory) is 

6 = lo* (1 - A )  dz, 

in terms of which the above assumption implies 

6, p ' ( Y ) J  < 1 , 1 / 4  Iz;(Y)I 6 < 1. (4.2) 

We then may neglect the local variation of each of 6, p and R with respect to y 
and set A = A(%) and xo = 0 in calculating shelf-width effects (note, however, 
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that k, as defined by (2.7), is referred to the outer depth lal). Invoking these 
approximations in (2.11), we obtain 

( i tQ),+~~’ , , ’ , , - i$A,~V+(1-&2)~z5 = 0. (4.3) 

Guided by the known solution for A = 1, equation (3.3), we seek a solution to 
(4.3) in the form 

<(x, y) = ~ ( z )  e-ePz+iPV. 

(e-2ePz RA’)’ + (1  - $2) (A2 - ,PR) e-2elz A = o 

(4.4) 

Substituting (4.4) into (4.3) and (2.12), we obtain 

(4.5) 

and RA’ = o (x = o) ,  A = o(e1Pz) (x -+ co), (4.6a7 b) 

where primes now imply differentiation with respect to x. 
Integrating (4.5) over (0, co) and invoking (4.6), we obtain 

Substituting the primitive approximation 

A(%) = A,{l + O(k6)}, A, = A(O), (4.8a7 b) 

into (4.7) and invoking the fact that A = 1 for x B 6, we obtain 

((P-p2)(2$/3)-1+p (4.9) 

which (together with the restriction p > 0) implies 

p = A { l + ~ k 6 + 0 ( k ~ 6 ~ ) } .  (4.10) 

The wave speed implied by (4.4) and (4.10) on x = 0 is? 

c = cl{l - p + o ( R 2 6 a ) }  

= c1 - 2Qd sin 0 + O(R262~l ) ,  

(4.11a) 

(4 . l lb)  

where d, the dimensional counterpart of 6, is defined by (4.1) with x replaced 
by the dimensional distance from the coastline therein. Numerical evaluations 
of 6, based on measured profiles, yield = 0.08 for the broad shelf off Southern 
California and 0.02 for the narrowest portions of the shelf near Cape Mendocino. 
The former value compares with the estimate of 0.06 for either a, two-step or 
an exponential fit to the Southern California shelf (Munk et al. 1970). 

Substituting ( 4 . 8 ~ ~ )  and (4.10) into (4.5) and invoking the restriction x = 0(6), 
we obtain 

(RA‘)’ = - (1-$2)R2(1-A)A,{ l+O(Rf3))  (x= O(6)). (4.12) 

t This result is anticipated by Smith (1972), whose paper appeared while the present 
paper was subjudice. His derivation differs somewhat from that given here, and he does not 
derive counterparts of (4.13) and (4.14); accordingly, I have thought it worthwhile to 
present the above analysis as originally written. 
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FIGURE 2. (a)  An arbitrary distortion of an approximately straight coastline. ( b )  A corner. 

Integrating (4.12) subject to (4.6a) and (4.8b), we obtain 

/ z ~ / z ( l - A ) d x + O ( L 3 8 3 )  
o h  0 

(4.13) 

Substituting (4.4) and (4.13) into (3.14), we obtain 

8 = Lh-1 (1 - A) dx + O(R282), (4.14) 

which is O(L8) for a given profile but may be numerically much larger than k8 
in shallow water. (The fact that e is finite at  2 = 0 if vanishes linearly as x .1 0 
reflects the singularity in the equations of motion a t  A = 0.) 

The approximations in the preceding paragraph are not uniformly valid as 
Lx -+ 00. Uniformly valid approximations may be obtained by replacing (4.4) by 

(4.15a, b )  

and transforming the resulting modifications of (4.5) and (4.6) to an integral 
equation, which may be solved by iteration (cf. Lighthill 1957, $6)  to obtain 
both /3 and A($).  This procedure yields approximations that are equivalent to 
(4.10) and (4.13), but it is rather less efficient than the procedure followed here. 

/I 

&r, y) = A(x) e-pz+@y, ,u = (p2 - ( I  - e 2 )  P)t, 

5. Bend in coastline 

figure 2 (a)),  such that 
We now consider a coastline that departs slightly from x = 0 in y < 0 (see 

X,(Y) = 0 (Y > O ) ,  IXIxY)l < 1 (y < 0). (5.1) 

(5.2) 

by placing a distributed source, with strength proportional to x;(~), along y < 0 
and projecting the boundary condition ( 2 . 1 2 ~ )  on x = 0. Solving the resulting 

Proceeding as in thin-airfoil theory, we perturb the Kelvin wave 

<(O)(x, y) = A e- P l g X + i R a ,  
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boundary-value problem with the aid of Fourier transformation over y or, 
equivalently, by generalizing Buchwald’s (1971) result for a point source on 
a straight coastline, we obtain 

where p = {P”(l-&”kR”)B (Lzp 2 0). (5.4) 

The simplest and most interesting special case is a corner, xA = - E ,  where E > 0 
if the corner is concave (see figure 2 ( b ) ) .  Carrying out the 7 integration in (5.3) 
for this case yields 

Carrying out an asymptotic approximation by the method of steepest descent 
(the calculation differs from that given by Buchwald only in that the pole at 
~3 = /is now double), we obtain 

C(X,Y) - C E ( ~ , Y ) + C P ( X , Y ) ,  (5.6a) 

(5 .6b )  where &-(x, y) = C(O)(z, y) [l +is( - kx+ i/ky + 4t-l) H($p - $)I, 

K = (1 - & 2 ) i  k, $1 = - sin-l(l - /2)21, (5.7a, b )  

and r and $ are cylindrical polar co-ordinates (see figure 2 ) .  If 1 > I, $1 = 0, 
and C p ,  the Poincare wave, decays exponentiallyiin I K I  r .  Rewriting the term in 
square brackets as an exponential, which we may do without altering the 
magnitude of the error implicit in (5.3), we obtain 

Cxk, y) = C(”(x + sy, y - 4 exp (&El!)  (1 + O ( C 2 ) )  ($ < $11, (5.8) 

which represents a Kelvin wave moving parallel to x = - ~ y  in $ < $1 with 
a phase advance of i s / [  relative to C ( O ) .  The corresponding delay time is 

t, = - &(lcr)-l = - &E( sin @-I. (5.9) 

The amplitude of /&, which differs from that of C(O) by O ( E ~ ) ,  may be calculated 
through an energy balance. The dimensionless energy flux (referred to &gh2 
as the unit of energy per unit area) in the incident Kelvin wave, for which the 
dimensionless group velocity is unity, is given by 

A similar result holds for the transmitted Kelvin wave. The corresponding energy 
flux for the Poincare wave, for which the dimensionless group velocity is 

= &2(/3k‘)-’ (1 - /*) I A (2H(  1 - 1) { 1 + O(e2)},  (5.11 b)  
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(a) 
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0 
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( b )  

FIGURE 3. The phase of the Kelvin-wave transmission coefficient for the corner of figure 2 ( b ) .  
(a )  For [ = in, n = 1,2,3,4.  ( b )  For l/& = i n ,  n = 1,2,3,4.  These same curves also give q 
for = in. 
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where (5.66) has been substituted into (5.11a) to  obtain (5.11b); gP = 0 for 
C > 1. The amplitude of the transmission coefficient then is given by 

IT1 [cK/c(o)l = {1-(&"/&fo))}* = ~ - ~ E ~ ( ( P - ~ - [ ~ ) ~ ( ~ - ( P ) ,  (5.12) 

in agreement with the exact result (Packham & Williams 1968; (A 6) below) to 
0 ( c 2 ) .  The corresponding approximation implied by (5.8) is 

arg T = arg {cK/c(o)'> = &/! + O(e2).  (5.13) 

The exact results (see appendix) for a rgT are plotted in figure 3. The exact 
results for JTI are plotted by Packham & Williams (1968). The approximate 
results, (5.12) and (5.13), are roughly adequate for (P > 4 and ]el < an. 

The results (5.6)-(5.13) hold for any bend (sustained change of direction) in 
the coastline that takes place within a coastal distance that is small compared 
with l/lg (this conclusion rests on the asymptotic development of the integral 
in (5.3) and is not necessarily valid for non-small E ) .  If the change of direction is 
not sustained but there is a sustained displacement, such that xo = x, for y < - 1, 
we may integrate (5.3) by parts to obtain 

Carrying out the asymptotic approximation as above, we obtain 

C(x,y) 5'o'(~-~1,Y){1+o(lg,,~)} (4 +-a). (5.15) 

It follows that the change of phase induced in the Kelvin wave by a displace- 
ment of the coastline (without a sustained change of direction) must be O(Px:). 
The same is true for a bump without a sustained displacement: if so(y) is con- 
tinuous, xo = 0 in y < - I and lxol < x, in 0 >/ y > - I ,  then only the second 
integral in the braces of (5.14) remains after integrating (5.3) by parts, and 

5(X,Y)  5(o)(.,Y){1+0(621x01~,,)} V Y  +-a). (5.16) 

This last result is related to that for a harbour of (dimensionless) area A ,  for 
which the change in phase of the diffracted Kelvin wave is O([A2A) (Miles 1972). 

6. California coastline 
Combining the curvature and shelf effects of $5 3 and 4, we find that the net 

speed of a Kelvin wave along the California coast varies from roughly 0 . 8 2 ~ ~  
south of, to 0.986, north of, Cape Mendocino. Munk et al. (1970) report that the 
M, (semi-diurnal) tide advances northward with a speed of 0.76, along the Cali- 
fornia coast south of Cape Mendocino and construct a semi-empirical model 
for this coastal tide in which the dominant component is a Kelvi& wave that is 
corrected for the shelf but not for the Earth's curvature. It seems likely that the 
latter correction would increase the dominance of the Kelvin wave (vis-dr-vis the 
free Poincnr6 wave and the forced waves) in their model. 
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The direction of the California coastline at the outer edge of the continental 
shelf is roughly constant (9 = 230") from Punta Baja (30" N) to  Cape Mendocino 
(40" N), at which point it turns through 50' and runs approximately due north 
as far as Juan de Fuca Strait (48"N). The asymptotic time delay for a Kelvin 
wave turning the corner at  Cape Mendocino, using either the approximation 
(5.9) or the exact result (see appendix), is 1-3 h.? This is in rough agreement with 
the observed (Munk et al. 1970) anomalies in the M, tide between Point Arguello 
and Crescent City; however, these anomalies are observed south, as well as north, 
of Cape Mendocino and therefore cannot all be charged to Kelvin-wave diffraction 
a t  the corner. [The change in depth across the Mendocino fracture zone also 
induces a time delay in the Kelvin wave, but an unpublished calculation reveals 
that this delay is small compared with that induced by the bend.] 

This work was partially supported by the National Science Foundation under 
grant NSF-GA-10324, and by the Office of Naval Research, under Contract 
N00014-69-A-0200-6005. 

Appendix. Transmission coefficient for corner 
Packham & Williams (1968, $ 5 )  obtain the complex Kelvin-wave transmission 

coefficient for a corner of internal angle y = n - c in forms that are equivalent to 
(Packham & Williams use B for the complex transmission coefficient and T = IBJ 
for its amplitude) 

T = (  tanh (ny - im) tanh (ny) Q ( i 7 , ~ )  (C < 1) (A la) 

(A 1b) 

where 7 = 4(n/31), (A 2) 

Tshh (2yy) tanh (ny) R2(iy, 7) (1 > 1)) 

and M is Barnes's double gamma function, which satisfies the difference equation 

M ( Z  + i , 7 )  = r(q7) ~ ( 2 ,  T), (A 5 )  

where I? is the gamma function. 
Packham & Williams deduce from (A 1)  that 

t In contrast, the estimated time delay induced by San Francisco Bay at more northerly 
points is only three second (Miles 1972). 
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but do not give explicit results for the phase of T. Remarking that 

argR2(iq, 7 )  = arg a i r ,  7 )  = m, 7 ) ,  (A 7) 

arg T = P(% 7 )  H(1-I) + Q(T,  4, (A 8a)  

where ~ ( q ,  7 )  = - tan-l {sin (2m)lsinh (27rry)}, ( A 8 b )  

we obtain 

and, here and subsequently, the arctangent lies in (-in, gn). It then remains 
to calculate q. 

Of the several forms given by Barnes (1899) for his double gamma function, 
we choose 

9 ( A 9 )  
exp { a ’ ( z / ~ )  + +b‘(z /~)~}  r(m7) exp { z$ (m~)  + &2$’ (m~)}  

r ( z  + m7) M ( z , 7 )  = rI 
7 V )  m = l  

where a’ and bf are real parameters, the magnitudes of which are irrelevant for 
the present development, and II. is the digamma function. Substituting (A 9) 
into (A 4a),  we obtain 

W 

- ( 2  - 8;) arg I?( 8 + m7 + ir)}, (A 10) 

where 82 is the Kronecker delta. Invoking the result (Abramowitz & Stegun 
1965, 56.1.27) 

(A l l a )  

(A l i b )  

where X(Y) = Y - Y, (A 12) 

we transform (A 10) to 

(A 13b) 

where (A 13b) follows from (A 13a) with the aid of standard results for the 
digamma function and a rearrangement of the x summations. The convergence 
of the series in (A 136) is quite adequate for a high-speed computer except in 
the neighbourhood of y = 0 (see below). 

The limiting results as y tends to 0, T ( E  -+ 0 ) ,  and 2n (half-plane) are of special 
interest. Letting y J. 0 (r,7 ? co) in (A lo), invoking Stirling’s approximation for 
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the gamma function, and expanding the result in inverse powers of mr with 
qlmr fixed, we obtain (after considerable reduction) 

(A 14a)  

= Qn - ace +I-') y + O(y2) (y  4 0) .  (A 14b) 

Expanding (A 13b) about 6 = 0, we obtain 

which, together with the corresponding expansion of (A Sb), yields (5.13). 
Setting r = 4 (y  = 2 n )  in (A 

q = n+2{arg I'(i~)-argI'(i+iq)+argI'(~+i~)-argI'(f+iq)) (A 16a)  

we obtain 

= 2 arg (sec n(& - iq)) 

- - -sin-l(l;t) ( y  = 2 n y e 2 1 ) ,  

(A 16b) 

(A 16c) 

where (A 16 b) follows from (A 1 6 a )  with the aid of the recurrence and reflexion 
formulae for the gamma function. Substituting r = t and (A 16c) into (A 6) and 
(A S), we obtain 

I{ 1 + (1 - ez)+}-' e+n (A 17a) 

exp(-isin-l(if/')) (y  = an,$ > 1). (A 17 b) 

The only other special cases for which T may be expressed in finite terms 
appear to be those for which r = n + $ (n = ly 2, ...; n = 0 is trivial). Packham & 
Williams (1968, 0 6) reduce (A 1) to 

( y  = 2n,e -= 1) T = (  

n sin 2(sy - ic) 
,=lsin2(sy+iS) 

T =  (n/y = 2n+  1) 

and deduce that IT1 = 1 for these corners. The corresponding phase shift is 
given by 

The result (A 8) is plotted in figure 3. The quantity p is oscillatory in y > in 
and has an oscillatory singularity as E f n, for which reason arg T is not plotted 
in E > in for 1 < 1. Numerical values in this domain may be obtained by 
calculating p from (A 8 b) and involving the fact that q = arg IT for > 1 is 
invariant under the transformation 1 c-) 111. 
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501-5 1 1. 

Note added in proof. Pinsent (1972) has recently carried out a calculation to 
second order of the effects on a Kelvin wave of both changing depth along the 
coast and departure of the coast from a straight line; however, his result for 
the ‘transmitted Kelvin wave ’, equation (3.1 l), is valid only for changes of 
compact support in the sense that the changes in depth and coastline 
displacement must have been completely traversed at  the point of observation. 
Pinsent also (in his $5.2) calculates local amplitude and phase changes and 
compares his results for the California coastline with the data of Munk et al. 
(1970). He obtains similar trends in the coastal variation of both tidal amplitude 
and tidal phase ; however, he appears to have fitted the coastline at  the inner, 
rather than the outer, edge of the continental shelf and to have neglected 
sin 8 in calculating the Coriolis parameter. 


